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Models for understanding and controlling oscillations in the flow past a rectangular
cavity are developed. These models may be used to guide control designs, to
understand performance limits of feedback, and to interpret experimental results.
Traditionally, cavity oscillations are assumed to be self-sustained: no external
disturbances are necessary to maintain the oscillations, and amplitudes are limited by
nonlinearities. We present experimental data which suggests that in some regimes, the
oscillations may not be self-sustained, but lightly damped: oscillations are sustained
by external forcing, such as boundary-layer turbulence. In these regimes, linear
models suffice to describe the behaviour, and the final amplitude of oscillations
depends on the characteristics of the external disturbances. These linear models are
particularly appropriate for describing cavities in which feedback has been used for
noise suppression, as the oscillations are small and nonlinearities are less likely to be
important. It is shown that increasing the gain too much in such feedback control
experiments can lead to a peak-splitting phenomenon, which is explained by the linear
models. Fundamental performance limits indicate that peak splitting is likely to occur
for narrow-bandwidth actuators and controllers.

1. Introduction
Recent experiments using feedback to control cavity oscillations have met with

limited success. Some early flow-control experiments (Cattafesta et al. 1999; Williams,
Fabris & Morrow 2000) suppressed individual Rossiter tones by up to 20 dB with
active feedback; however, other tones were unaffected or enhanced by the control
system. When the control gains were increased to achieve greater suppression, new
frequencies would appear in the spectrum, or the suppressed peak would split. These
effects were undesirable, and unpredictable. The goal of this paper is to use physics-
based models to understand these effects, guide future control designs, and understand
any fundamental performance limits, for a given choice of sensor and actuator.

The usual description of cavity oscillations involves self-sustained oscillations,
caused by the familiar Rossiter mechanism (Rossiter 1964; Tam & Block 1978;
Rowley, Colonius & Basu 2002): small disturbances are amplified by the shear layer,
and produce acoustic waves when they impinge on the downstream corner; these
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Figure 1. Block diagram of a cavity model.

acoustic waves then propagate upstream and excite further instabilities in the shear
layer, leading to self-forcing. In the absence of any external forcing, the cavity would
continue to oscillate. The cavity behaves as a dynamical system with a stable limit
cycle about an unstable equilibrium point (a steady solution of Navier–Stokes). The
amplitude of the oscillations is determined by nonlinearities, such as saturation of
instabilities in the shear layer.

By contrast, we demonstrate that for many conditions where oscillations are
observed, the cavity behaves as a stable lightly damped system. The flow amplifies
noise at certain resonant frequencies, but if the external forcing were removed, the
oscillations would disappear. Purely linear models may be used to describe this
mechanism, as the final amplitude of oscillations is determined by the amplitude of
the forcing disturbances (e.g. boundary-layer turbulence, or wall roughness), and by
the linear gain of the system. Nonlinearities, such as saturation of instability waves
in the shear layer, may still be present in this mechanism, and will also affect the
final amplitude of oscillations, but they are not necessary to explain finite-amplitude
oscillations. We show that the previously noted performance limitations of feedback
control are explained by this alternative view of cavity oscillations, and note that
controllers can be designed to minimize the adverse effects.

The paper is organized as follows: we present the physics-based linear model in
§ 2, then describe some experimental results in § 3. In § 4, we use the model to explain
a peak-splitting phenomenon observed in the experiment, and to understand some
fundamental limitations of any feedback controller used to suppress the oscillations.

2. Analytical model
The cavity dynamics are modelled after the familiar Rossiter mechanism described

in § 1. A block diagram of the model is shown in figure 1, where we represent each
component of the physical mechanism as a separate transfer function. Here, G(s)
represents the shear-layer transfer function, i.e. the transfer function from velocity
disturbances v0 at the leading edge to velocity disturbances vL at the trailing edge.
Transfer functions for acoustic scattering, propagation and receptivity are given by S,
A and R, and in the diagram, p0 and pL denote pressure disturbances at the leading
and trailing edges, respectively.
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The other transfer functions depicted in figure 1 represent the influence of a
controller and an actuator (for instance, a zero net mass flux jet or oscillating flap at
the cavity leading edge). The controller transfer function, which we choose, is given
by C(s), and the actuator dynamics are described by a transfer function V (s). In
this diagram, the output y is the pressure at the upstream lip of the cavity, which
in an experiment may be measured by a pressure transducer. The plant is excited
by external noise (e.g. turbulent boundary-layer fluctuations), modelled by an input
disturbance n.

The overall transfer function for the cavity is then

P (s) =
ASG

1 − RASG
. (2.1)

For the purposes of studying the dynamical features of this model, we ignore the
actuator dynamics, setting V (s) = 1. (These actuator dynamics may, in principle, be
measured from the experiment, and once measured, their effects may be inverted
out of the control laws we obtain.) Theoretical models for the remaining transfer
functions are discussed below.

2.1. Shear layer

The shear-layer transfer function G(s) may be determined from linear stability theory.
We begin with velocity profiles measured in experiments by Williams et al. (2000),
shown in figure 2. These profiles are from an experiment with Mach number M = 0.34,
in a cavity with aspect ratio L/D = 5, where L and D are the cavity length and depth,
respectively, as shown in figure 3. The upstream boundary layer is turbulent, with a
momentum thickness of 3 mm, measured with a Pitot tube and a hot wire. Figure 2
shows the experimental data along with hyperbolic tangent profiles with the same
vorticity thickness. Here, x is the streamwise direction, and y is the wall-normal
direction, with the origin at the upstream cavity corner. The spreading rate of the
shear-layer is determined from a linear fit to the data, and used as an input to a
linear stability calculation to determine the amplification and phase of shear-layer
disturbances. Because the profiles are slowly varying in the streamwise direction, a
locally parallel analysis is used at each streamwise location (for details of the linear
stability calculation, see Rowley et al. 2002). We then fit a high-order rational function
to the resulting transfer function (with little loss of accuracy), and the result is shown
in figure 2. Using this rational function approximation, we may immediately obtain a
state-space realization of the transfer function, and apply standard tools from control
theory to the resulting model.

As a simpler alternative, we also consider the shear layer modelled as a second-order
system with a time delay

G(s) = G0(s)exp(−sτs) =
ω2

0

s2 + 2ζω0s + ω2
0

exp(−sτs), (2.2)

where ω0 is the natural frequency of the second-order system (e.g. this may be chosen
to be the frequency of the most unstable Kelvin–Helmholtz mode), and ζ is the
damping, related to the maximum amplification. The time delay τs is the convection
time for a disturbance to travel the length of the cavity, and is given by τs = L/cp ,
where cp is the mean phase speed.

The purpose of the second-order model (2.2) is not to fit the linear stability results
perfectly, but to provide a simple model that captures the same general features: unity
gain at low frequencies, amplification at mid frequencies, and attenuation at high
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frequencies, with an appropriate phase delay. In addition, its adjustable parameters
allow the model to be tuned to match specific experimental results, and give insight
into the effects of the various parameters. Note that for control, we need the model
to be accurate only in the frequency range over which the controller acts, and this
model may be tuned to arbitrarily high accuracy in a narrower range of frequencies.

2.2. Acoustics

The model we use for acoustic propagation in the cavity consists of a simple time-
delay, with reflection:

exp(–sτa)

r exp(–sτa)

+

pL p0

A(s) =
exp(−sτa)

1 − r exp(−2sτa)
. (2.3)

Here, τa = L/a is a time delay which represents the acoustic lag between the trailing
edge and the leading edge (here, L is the cavity length and a is the sound speed
inside the cavity). An acoustic wave emanating from the downstream corner x = L

propagates upstream, and some of it reflects off the upstream wall, propagates
downstream, and again reflects off the downstream wall. The reflection coefficient r

measures the total efficiency of the reflection process, including losses via acoustic
radiation to the far field (e.g. if both reflections are perfect, with no radiation to
the far field, then r = 1; if upstream and downstream reflections each reduce the
amplitude by 0.5, then r =0.25). This model therefore captures longitudinal modes
of acoustic resonance, but ignores transverse modes. For r =0, the model is a pure
time delay, and for 0 <r < 1, the Bode magnitude plot of A(s) shows resonant peaks
at the fundamental frequency 1/(2τa) and its harmonics. Note that these acoustic
resonances are not the Rossiter frequencies, but they may influence the mode selection,
determining which Rossiter mode is dominant, as described in Williams et al. (2000).

2.3. Scattering and receptivity

Scattering and receptivity effects at the trailing and leading edge, respectively, are
the least simple to model. They have been studied by Crighton (1992) for edge
tones, and Kerschen & Tumin (2003) for cavity flows. In Rossiter’s empirical formula
for predicting cavity frequencies, the scattering and receptivity effects are treated
together as a simple phase lag, independent of frequency. Here, we follow Rossiter’s
approach and model scattering and receptivity each as complex constants. This
approximation is justified since the strongest frequency dependence of the amplitude
occurs in the shear layer (Kelvin–Helmholtz instability), and the strongest frequency
dependence of the phase results from time delays in the shear layer and acoustics, as
discussed above. For a more accurate model, the scattering and receptivity results of
Kerschen & Tumin (2003) could be employed.

2.4. Overall cavity model

The overall cavity transfer function P is formed from equation (2.1). To gain
some insight into the model, first we consider some special cases. In particular,
for certain choices of parameters, we recover the Rossiter formula for the frequencies
of oscillation. For the shear-layer model (2.2), suppose G(s) = exp(−sτs), and take
τs =L/cp , with cp/U = κ . Assuming R = 1 and S = exp(−i2πγ ), a constant phase,
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with no reflections (r = 0) in the acoustic model (2.3), the overall transfer function
becomes

P (s) =
exp(−i2πγ ) exp(−s(τs + τa))

1 − exp(−i2πγ ) exp(−s(τs + τa))
,

which has poles at s = iω, with

ωL

2πU
=

n − γ

M + 1/κ
, n = 1, 2, . . . , (2.4)

which is the familiar Rossiter formula for the frequencies of oscillation. The other
features of the model include the effects of longitudinal acoustic modes in the cavity
(with r > 0), as well as amplification effects by the shear layer (with G0(iω) �= const
in (2.2)). Note that both of these features primarily affect the amplitude of the loop
gain, and hence the stability of each mode, and have only a minor effect (due to their
phase) on the overall resonant frequencies.

The advantage of the present model over Rossiter’s original formula is, of course,
that the present model is dynamically accurate: it does not merely predict resonant
frequencies, but predicts how the output (a pressure measurement) evolves in time,
given an arbitrary actuator input or external disturbance. We will use these models
to explain some features in the experiment described in the next section.

3. Experimental dynamics
Experiments were performed using the 3 ft×3 ft subsonic wind tunnel at the United

States Air Force Academy in Colorado Springs. A cavity model 0.51 m long, 0.096 m
deep and 0.38 m wide was installed in the floor of the test section, and a diagram of
the set-up is shown in figure 3.

Eight Kulite pressure transducers were placed along the cavity walls, one on the
upstream wall, one on the downstream wall, and six along the floor, approximately
equally spaced. All signals were passed through anti-aliasing filters prior to sampling
by a digital data acquisition system at 6 kHz. The anti-aliasing filters were fourth-order
Butterworth filters with a passband of 0.4 Hz to 2.2 kHz.

The flow was forced using zero-net-mass blowing through a slot in the upstream
wall of the cavity, shown in figure 3. The actuator was a pair of 500 W 8 in diameter
loudspeakers in an enclosed chamber. Though the actuator injects zero net mass
through the slot, a non-zero net momentum is induced by spanwise vortices generated
by periodically blowing through the slot (the ‘synthetic jet’ effect, Smith & Glezer
1998).

In order to suppress oscillations, both analogue and digital controllers were
implemented. The analogue controller consisted of a bandpass filter and a phase
shifter. Digital controllers were implemented using a dSPACE interface board, running
on a separate computer from the data acquisition system. For the typical controllers
that we used, the maximum sample rate was about 20 kHz. Specific details of the
controllers used are given in § 4.2.

3.1. Lightly damped vs. self-sustained oscillations

As mentioned in § 1, two possible mechanisms may lead to finite-amplitude oscillations.
The conventional view, as in Tam & Block (1978) and Rowley et al. (2002), is that
the oscillations are self-sustained: in this mechanism, the linearized system (about a
steady solution of Navier–Stokes) is unstable, so tiny perturbations will grow in time,
and eventually saturate once nonlinearities become important. An alternative view,
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Figure 4. Spectra of the pressure signal from Kulite 7 at Mach numbers (a) M = 0.45 (– · –),
(b) M =0.34 unforced (- - -), and M = 0.34 with control (—–) (gain = 4.0).

considered for combustion instabilities by Mezic & Banaszuk (2004), is that the system
is linearly stable, but lightly damped, and constantly excited by external disturbances.
These disturbances are then amplified, causing oscillations at the resonant frequency of
the plant, but if the disturbances were removed, the oscillations would also disappear.
In practice, disturbances such as boundary-layer turbulence and wall roughness are
always present, so this mechanism can also explain persistent oscillations. In this
mechanism, nonlinearities may not be important: the amplitude of the oscillations is
determined by the amplitude of the excitation noise, and though nonlinearities may
still be present, they are not necessary to explain finite-amplitude oscillations. In this
section, we demonstrate that the cavity may operate in either the lightly damped or
self-sustained regime, depending on the Mach number and other parameters.

Note that in both cases mentioned above, the shear layer is locally convectively
unstable (i.e. not absolutely unstable), using the terminology of Huerre & Monkewitz
(1990). However, the flow may still be globally unstable if the acoustic feedback
provides a loop gain that is greater than unity. As discussed in Rowley et al. (2002),
several parameters affect this loop gain, including the thickness of the upstream
boundary layer, and the shear-layer spreading rate, which is influenced by the incident
turbulence level (Sarohia 1975). Note that the conditions classified as ‘no oscillations’
in the numerical investigations in Rowley et al. (2002) may still exhibit oscillations in
an experiment, where disturbances are present.

The lightly damped and self-sustained regimes may not be unambiguously identified
using only frequency spectra. For instance, spectra from the experiment at two
different Mach numbers are shown in figure 4, and it is not clear how we could discern
the mechanism from these figures. Both regimes are characterized by peaks at the
resonant frequencies, and we cannot tell whether the system is in a (noisy) limit cycle,
or whether it is stable, merely amplifying disturbances at certain frequencies. However,
it is often possible to distinguish between the two regimes using the probability density
function (PDF) of the output signal, bandpass filtered about the frequency of interest
(Mezic & Banaszuk 2004).

If the input disturbances have a Gaussian distribution, the PDF of a stable linear
system excited by these disturbances will also be Gaussian. By contrast, the PDF
of an observable from a limit cycling system (say y(t) = sin(t)) will typically have
two peaks, because the system typically spends more time near the extrema of the
limit cycle. Note that observables from more complicated periodic orbits might have
more complicated PDFs, but generically these also will not be Gaussian, and will
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have more than one peak. For a more rigorous treatment of these ideas, and their
application to a combustion control experiment, see Mezic & Banaszuk (2004).

We can also use time-delay phase portraits to distinguish between the two regimes.
The phase portrait of a limit cycling system will be a closed curve (or, with noise, a
‘fuzzy’ closed curve), while the phase portrait of a stable system forced by noise will
be concentrated about a point. Thus, the phase portrait and the PDF are useful tools
for distinguishing whether nonlinearities or external disturbances are more important:
if two (or more) peaks are observed in the PDF of the bandpass filtered signal, then
a limit cycle is present, and nonlinearities are dominant; if a single peak is observed,
we cannot conclude whether a limit cycle is present (as it may be buried in the noise),
but nevertheless the noise is the dominant feature.

Phase portraits for the same measurements as in figure 4 are shown in figure 5.
At M = 0.34, the system appears to be in a limit cycle. The phase portrait indeed
looks like a fuzzy ellipse, and the PDF has two distinct peaks. However, at M =0.45,
the system appears to be at a stable equilibrium point, driven by noise. The phase
portrait is concentrated about a point, and the PDF has a single peak which closely
resembles a Gaussian.

A sweep of Mach numbers from 0.1 to 0.45 in increments varying from 0.01 to
0.05 revealed that M =0.34 is the only Mach number where the unstable regime is
observed. Furthermore, at this Mach number, only a single frequency is observed,
while at most other Mach numbers, multiple modes exist simultaneously. This is
possibly because at M = 0.34, the longitudinal acoustic modes in the cavity reinforce
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the Rossiter modes: the frequency of the first longitudinal mode coincides with
the frequency of the third Rossiter mode (Williams et al. 2000). Presumably, this
reinforcement increases the loop gain at this frequency enough to cause the system
(P in figure 1) to become unstable. Another possible mechanism put forth by
Alvarez & Kerschen (2005) suggests that the wind-tunnel walls increase the growth
rate of specific acoustic modes.

We note that more generally, any effect which increases this loop gain may cause
instability. In particular, Rowley et al. (2002) observed that cavities with laminar
upstream boundary layers will experience greater shear-layer amplification, and thus
a greater loop gain. This is further corroborated by Sarohia (1975), who observed
that cavities with laminar upstream boundary layers were more likely to exhibit
oscillations. This may explain why the simulations in Rowley et al. (2002) with
laminar upstream boundary layers are apparently in the unstable regime, where the
parameter values are otherwise similar to those in the present experiment.

3.2. Behaviour with and without active suppression

The oscillations were suppressed by feeding back the pressure signal from Kulite 8
through an analogue controller consisting of a bandpass filter and a phase shifter,
used in previous experiments by Williams et al. (2000). Pressure measurements for the
baseline and controlled cases are compared in figures 4 and 5. Here, the controller
applies a gain of 4.0, with a passband of 315–400 Hz, and a phase shift of 89◦ at
the resonant frequency of 337 Hz (the gain and phase are measured between the
pressure sensor feedback signal and the input to the actuator amplifier). From the
phase portrait and the PDF, it appears that the unforced case is in a limit cycle, but
with control there is a stable equilibrium point. The frequency response shows that
the closed-loop system does excite oscillations at a new frequency (at 435 Hz), and we
discuss these adverse effects of control later, but from the PDF it appears that these
oscillations are the result of disturbance amplification, not instability.

4. Performance limits
In this section, we use the analytical model developed in § 2 to understand any

fundamental limitations of feedback control, for the given arrangement of sensors
and actuators.

4.1. Empirically tuned model

The model we use is given by equation (2.1), with parameters chosen to make the
model agree approximately with the experimental conditions at M =0.34, and the
resulting frequency response is shown in figure 6. Actual values of time delays
were used where known, and the remaining constants were adjusted so that at
least one pole would be unstable, as observed in the experiment. For the shear layer,
equation (2.2) is used, with ω0 = 350 Hz, ζ = 0.2, and τs = L/cp , with κ = cp/U = 0.625.
(Here, U ≈ 117.5 m s−1 is the free-stream velocity.) For the shear-layer time delay,
we use a tenth-order Padé approximation to obtain a rational transfer function (for
this time delay, the approximation is valid up to about 500 Hz). The acoustics are
modelled by equation (2.3) with r = 0.45 and τa =L/a, where a is the sound speed in
the free stream, and a fourth-order Padé approximation is used for the acoustic time
delay (valid up to 800 Hz). Variations in the sound speed are assumed small for this
relatively low Mach number. The scattering gain is taken to be 0.23, and changing
this parameter adjusts the stability of the system: for larger values of this gain, the
system is unstable, and for smaller values, the system is more heavily damped.
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For a stable linear system, the magnitude of the frequency response may be viewed
precisely as the amount the flow amplifies disturbances at each frequency. The model
shown in figures 6 and 7 is unstable (the pole at Im(s) ≈ 2100 ≈ 334 × 2π is in the
right half-plane), and so this interpretation does not literally hold for figure 6, but is
still helpful for understanding the closed-loop results, once a stabilizing controller is
introduced, as will be discussed below. The peaks predicted by the model (imaginary
parts of the poles near the imaginary axis) are at 108 Hz, 241 Hz, 334 Hz and 422 Hz,
which correspond to the first four Rossiter frequencies. (Note that imaginary parts of
the poles correspond to frequencies in rad s−1). In particular, the 334 Hz pole closely
agrees with the 337 Hz peak measured experimentally; this pole is the most unstable
in the model because the shear-layer amplification is the greatest for this frequency,
and because the cavity acoustics reinforce oscillations at this frequency. For higher
frequencies, the model ceases to be valid, because of the approximations for the time
delays.
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4.2. Peak-splitting phenomenon

In the spectra shown in figure 4, at M = 0.34 the controller is able to reduce the
amplitude of the tone at 337 Hz, but not eliminate it completely. Increasing the
controller’s gain does not result in further suppression, as shown in figure 8, which
shows spectra from three different controllers with a larger gain (gain = 7.8) than that
shown in figure 4. These controllers were implemented digitally, but had the same
structure as the analogue controller used in figure 4: a second-order Butterworth filter
with a passband of 290–390 Hz was used, along with a time delay, which was varied
as shown in figure 8. The phase shifts (at 337 Hz) of the bandpass filter with time
delays of 0.4, 0.5 and 0.6 ms were 124◦, 97◦ and 80◦, respectively.

In figure 8, the main resonant frequency at 337 Hz is almost completely attenuated,
but sidebands appear very close in frequency, at about 320 Hz and 341 Hz. As the time
delay is changed, the relative strength of the sidebands changes, and the frequency
changes slightly–the lower frequency shifts from 320 to 325 Hz in figures 8(a)–8(c).
In retrospect, this peak-splitting phenomenon also appears in some previous closed-
loop cavity experiments (e.g. Cattafesta et al. 1999, figure 5). This phenomenon has
also been observed in combustion experiments at UTRC by Banaszuk et al. (1999)
and Cohen & Banaszuk (2003), where they have been explained using the linear
mechanism discussed below.

To explain these effects, consider how feedback affects the amplification of
disturbances. Without control, the transfer function from disturbances to measured
pressure is simply P (s) (see figure 1). With feedback, and assuming V (s) = 1, the
transfer function is P (s)/(1+P (s)C(s)), so the open-loop transfer function is modified
by the amount

S(s) =
1

1 + P (s)C(s)
, (4.1)

called the sensitivity function. If |S(iω)| < 1, then disturbances are attenuated, so
feedback is beneficial, but if |S(iω)| > 1, then disturbances are amplified by control.
Here, we will assume that the closed-loop system is stable, even though the open-loop
P (s) may be unstable (as it should be at M = 0.34, from figure 5). Note that if P is
unstable, the open-loop amplification of disturbances is unbounded, but the closed-
loop amplification is still |P (iω)S(iω)|, so the Bode magnitude plot in figure 6 still has
a meaningful interpretation. Also note that if there are actuator dynamics (V (s) �= 1),
these may be included by incorporating V (s) into P (s).

The sensitivity function may be determined from a Nyquist plot of the system,
which is just a plot of P (iω)C(iω) in the complex plane, as ω varies from 0 → ∞.
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Points outside the dashed circle correspond to a performance benefit (|S(iω)| < 1), and points
inside the circle correspond to a penalty (|S(iω)| > 1).

Figure 9 shows the Nyquist plot for the plant P (s) given by the empirically tuned
model shown in figure 6, for C(s) given by a bandpass filter, with a gain and time
delay. Graphically, the magnitude of the sensitivity function S(iω) is the reciprocal
of the distance from P (iω)C(iω) to the −1 point. Thus, from figure 9 we would
expect the peak frequency of 334 Hz to be attenuated, since this point is far from the
−1 point, while frequencies at 320 Hz and 350 Hz should be amplified by the feedback
loop, as these points on the Nyquist plot lie inside the unit circle centred about the
−1 point, and thus correspond to |S(iω)| > 1. As expected, feedback attenuates the
main frequency, but amplifies sidebands.

If the gain is increased, the entire Nyquist plot is magnified, so the 334 Hz peak
moves farther from the −1 point, while the sidebands move closer, so the main
frequency should be attenuated more, while the side peaks should be amplified more.
This effect is also consistent with the observed experimental behaviour.

For a slightly smaller time delay than that used in figure 9 the Nyquist plot will be
rotated slightly counterclockwise, so the lower-frequency sideband at 320 Hz will be
amplified more, while the higher-frequency sideband at 350 Hz will not be amplified
as much. Conversely, for a slightly larger time delay, the Nyquist plot will be rotated
clockwise, so the 350 Hz sideband should be amplified more. These effects are all
consistent with the experimental results shown in figure 8.

Note also that a controller-induced resonance at 435 Hz is present for the analogue
controller shown in figure 4, but much less significant for the digital controller in
figure 8. This is because the passbands of the analogue and digital controllers are
different, and the digital controller rolls off more steeply, so the gain at 435 Hz is
smaller than for the analogue controller.

4.3. Fundamental limitations of closed-loop control

Ideally, we would like to design a compensator C(s) such that the sensitivity function
|S(iω)| � 1 for all frequencies. Unfortunately, this is not possible, because of Bode’s
integral formula (also known as the area rule), which states that under weak
assumptions, any decrease in sensitivity over one frequency range must be balanced
by an increase for some other frequencies (Doyle, Francis & Tannenbaum 1992).
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More precisely, for a system with relative degree at least 2, the area rule states that
∫ ∞

0

log |S(iω)| dω = π
∑

k

Re(pk), (4.2)

where pk are the unstable poles of PC. So for a stable plant, any negative area
(|Siω)| < 1) in the log–linear plot of S versus ω must be balanced by an equal positive
area (|S(iω)| > 1), no matter how the controller C(s) is chosen. For unstable plants,
the situation is worse, and the net area must be positive.

The area rule in itself does not imply any peaking of |S(iω)|, as the positive area may
be spread out over a large frequency band, as ω → ∞. However, Banaszuk et al. (1999)
and Cohen & Banaszuk (2003) showed that for narrow bandwidth controllers, and
plants with significant time delays, the area rule does imply a peaking of |S(iω)|, since
all of the amplification must occur within the narrow bandwidth of the controller.
The narrower the bandwidth, or the longer the time delay, the greater the amount
of peaking. This implies a strong argument in favour of large bandwidth actuators,
and suggests that narrow-bandwidth actuators (such as piezoelectrics) might not be
suitable for feedback control.

5. Conclusions
We have presented a linear model for cavity oscillations, incorporating the

effect of external disturbances. Under some conditions, the system is unstable, and
perturbations will grow until nonlinearities become important and the linear model
is no longer valid. However, for other conditions, the system is stable, but lightly
damped, acting as a noise amplifier. Phase portraits and probability density functions
of experimental data indicate that for most flow regimes observed in our experiment,
the cavity is a stable noise amplifier, oscillating at several different Rossiter modes
simultaneously. For the M = 0.34 case, however, the flow is in a limit cycle, oscillating
at a single Rossiter mode, possibly because of enhanced acoustic resonance at this
value of M .

For this Mach number, the flow may be stabilized using a controller consisting of a
bandpass filter and time delay. When control is introduced, however, a peak-splitting
phenomenon is observed, in which the main peak splits into two sidebands. These
same effects are found in the linear model. The peak splitting effect has been observed
in experiments in combustion instabilities by Banaszuk et al. (1999), and is a common
feature of systems with limited bandwidth and large time delay.

If the noise-amplification model of cavity oscillations is correct, we cannot expect
to be able to reduce the amplitude of oscillations at all frequencies using feedback,
because of fundamental limitations imposed by the area rule. However, given an
accurate model of the system (e.g. from a frequency response experiment), it is
straightforward to design a compensator to minimize these adverse effects, and
reduce oscillations over important frequency ranges, while paying the penalty over
less important frequency ranges, or ranges where the plant itself is not so sensitive to
disturbances.

Finally, we note that while nonlinearities may be important for cavity oscillations
in other parameter ranges, it is hoped the controlled system will always be stable,
so the linear models presented here should always be useful for understanding the
controlled system.
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